Optimal Rule Set Generation Using Pso Algorithm
نویسندگان
چکیده
Classification and Prediction is an important research area of data mining. Construction of classifier model for any decision system is an important job for many data mining applications. The objective of developing such a classifier is to classify unlabeled dataset into classes. Here we have applied a discrete Particle Swarm Optimization (PSO) algorithm for selecting optimal classification rule sets from huge number of rules possibly exist in a dataset. In the proposed DPSO algorithm, decision matrix approach was used for generation of initial possible classification rules from a dataset. Then the proposed algorithm discovers important or significant rules from all possible classification rules without sacrificing predictive accuracy. The proposed algorithm deals with discrete valued data, and its initial population of candidate solutions contains particles of different sizes. The experiment has been done on the task of optimal rule selection in the data sets collected from UCI repository. Experimental results show that the proposed algorithm can automatically evolve on average the small number of conditions per rule and a few rules per rule set, and achieved better classification performance of predictive accuracy for few classes.
منابع مشابه
The Optimal Placement of Distributed Generation (DG) to Improve the Voltage Profile and Reduce Losses in Radial Distribution Networks Using PSO
Voltage profile and losses are important factors in a distribution network in which there arevariety of ways to improve them. In this paper, distributed generation (DG) is used as a solutionto improve the above characteristics. Backward/Forward Sweep load flow algorithm is used dueto the inefficiency of usual load flow algorithms because of high R/X ratio and their lack ofconvergence in distrib...
متن کاملOptimal placement and sizing of distributed generation considering FACTS devices and load uncertainty using hybrid sine-cosine algorithm and particle swarm optimization (HSCA-PSO)
Using Distributed Generation (DG) in electrical distribution networks brings many advantages and thus, optimal placement and sizing of these units become important. Most of the researches in this field neglect the effect of transmission system on distribution section. These researches also ignore the effect of Flexible Alternating Current Transmission Systems (FACTS). This thesis proposes a new...
متن کاملFACTS Devices Allocation Using a Novel Dedicated Improved PSO for Optimal Operation of Power System
Flexible AC Transmission Systems (FACTS) controllers with its ability to directly control the power flow can offer great opportunities in modern power system, allowing better and safer operation of transmission network. In this paper, in order to find type, size and location of FACTS devices in a power system a Dedicated Improved Particle Swarm Optimization (DIPSO) algorithm is developed for de...
متن کاملSTATCOM Optimal Allocation in Transmission Grids Considering Contingency Analysis in OPF Using BF-PSO Algorithm
In this paper, a combinational optimization algorithm is introduced to obtain the best size and location of Static Compensator (STATCOM) in power systems. Its main contribution is considering contingency analysis where lines outages may lead to infeasible solutions especially at peak loads and it commonly can be vanished by load-shedding. The objective of the proposed algorithm is firstly to pr...
متن کاملSolving Multi-objective Optimal Power Flow Using Modified GA and PSO Based on Hybrid Algorithm
The Optimal Power Flow (OPF) is one of the most important issues in the power systems. Due to the complexity and discontinuity of some parameters of power systems, the classic mathematical methods are not proper for this problem. In this paper, the objective function of OPF is formulated to minimize the power losses of transmission grid and the cost of energy generation and improve the voltage ...
متن کامل